成功的教案应鼓励学生进行小组讨论,教案中应包括对教师自身的反思,帮助其不断改进教学方法,好文汇小编今天就为您带来了倍数的教案6篇,相信一定会对你有所帮助。
倍数的教案篇1
教学内容:
苏教版义务教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。
教学目标:
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
教学重点:
认识3的倍数的特征。
教学难点:
研究并发现3的倍数的'特征。
教学准备:
准备计数器教具和学具。
教学过程:
一、激活经验
1.复习回顾。
提问:2和5的倍数有哪些特征?
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)
二、学习新知
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或o.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)
许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)
2.利用经验,组织探究。
(1)找3的倍数。
(2)探索特征。
3.学生归纳,强化认识。
追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
启发:当你发现3的倍数的特征时,你对数学有什么感觉?
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
交流:你知道了什么?什么样的数叫完全数?举例说一说。(结合举例6和28,先板书因数,再板书表示完全数的等式) 现在发现的完全数都有什么特征?
三、练习巩固
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2、5的倍数不同在哪里?
倍数的教案篇2
教学内容:
教材19页内容,能被3整除的数的特征。
教学要求
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
教学重点:能被3整除的数的特征。
教学难点:会判断一个数能否被3整除
教学方法:
三疑三探教学模式
教具学具:
课件等。
教学过程
一、设疑自探(10分钟)
(一)基本练习
1、能被2、5整除的数有什么特征?
2、能同时被2和5整除的数有什么特征?
(二)揭示课题
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(11分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的'练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72 5679 518 90 1111 20373
2、58 115 207 210 45 1008
有因数3的数:()
有因数2和3的数:()
有因数3和5的数:()
有因数2、3和5的数:()
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
板书设计:
能被3整除的数的特征一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
倍数的教案篇3
教学目标:
1、在探索活动中,观察发现3的倍数的特征。
2、能够运用2、3、5的倍数的特征,迁移类推出其他相关倍数问题的解决方法。
教学重点:观察发现3的倍数的特征
教学难点:运用2、3、5的倍数的特征
教学过程;
活动一:复习巩固。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征么?指名说
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)
3、说说能同时被2和5整除的数有什么特征?(观察特征。用自己的话说一说。)
活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。
2、观察3的倍数,你发现了什么?先独立完成,看谁找的快
教师参与到讨论学习中。先独立思考,想己的想法,然后与四人小组的同学说说你的发现。
生一:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生二:十位上的'数也没有什么规律。
生三:将每个数的各个数字加起来试试看
3、你发现的规律对三位数成立吗?找几个数来检验一下。
活动三:试一试
在下面数中圈出3的倍数。
284553873665
活动四:练一练
1、请将编号是3的倍数的气球涂上颜色。自己独立完成,在小组内说说自己的想法。
361754714548
2、选出两个数字组成一个两位数,分别满足下面的条件。独立完成,说说你的窍门和方法。
(1)是3的倍数。
(2)同时是2和3的倍数。
(3)同时是3和5的倍数。
(4)同时是2,3和5的倍数。
活动五:实践活动
在下表中找出9的倍数,并涂上颜色。可以在自主实践以后再交流。
板书设计:
倍数的教案篇4
教学目标:
1、通过操作活动得出相应的乘除法算式,协助同学理解倍数和因数的意义;探索求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2、在探索一个数的倍数和因数的过程中培养同学观察、分析、概括能力,培养有序考虑能力。
3、通过倍数和因数之间的互相依存关系使同学感受数学知识的内在联系,体会到数学内容的奇妙、有趣。
教学重点:理解倍数和因数的意义。
教学难点:探索求一个数的倍数和因数的方法。
教学准备:每桌准各12个一样大小的正方形,每人准备一张自身学号的卡片。
设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发同学持续的学习兴趣;同学通过独立考虑、合作文流进行自主探索;教师引导同学掌握数学考虑的方法。
教学过程:
一、智力竞猜 引入新课
1、让同学进行“智力竞猜”——春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(局部同学能猜出三个人分别是孙子、爸爸、和爷爷)
2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请同学以韩有才为中心介绍—下三个人的关系。同学可能会说出“韩有才.是爸爸”,“韩有才是儿子”的语句,这时引导同学说出“谁是谁的爸爸”“谁是准的儿子”。
3、上述“父子关系”是一种互相依存的关系,在表述时一定要完整。并向同学说明自然数中某两个数之间也有这种类似的依存关系——倍数和因数。
设计说明:“智力竞猜”走同学喜欢的形式,因为每个同学都有争强好胜之心,“竞猜”有两个作用,一是激发同学的学习兴趣,二是以此引出“相互依存”的关系,为理解倍数和因数的相互依存关系作铺垫。
二、操作发现 理解概念
1、师:“‘智慧从手指问流出’,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并考虑一下其中蕴涵着哪些不同的乘除法算式。”
2、请同学汇报不同的摆法,以和相应的.乘除法算式。(乘法算式和除法算式分开写)再向同学说明:假如一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让同学特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)
设计说明;让同学写出蕴涵的乘除法算式符合同学的知识基础,同学有的可能用乘法表示,也有的可能用除法表示;让同学将旋转后相同的去掉,这是一次简化,很多同学并不知道,需要指导,这样可以使同学认识到事物的实质。
3、让同学一起看乘法算式4×3=12,向同学指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。
4、先请一个同学站起来说一说.然后同桌的同学再互相说一说。
5、让同学仿照说出6×2=12和12×1=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。
6、同学相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的因数。同学可能会出现0×( )=0的情况,借此向同学说明我们研究因敷和倍数一般指不是0的自然数。
设计说明:倍数和因数是全新的概念,需要教师的“传授、讲解”,需要同学的适当“记忆”——重复、仿照。当然,要使同学真正理解还必需举一反三,通过互相举例可以逐步完善同学对倍数和因数的认识,同时使同学明确倍数和因数的研究范围。
7、以4×3=12与12÷3=4为例,向同学说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让同学试一试其他几个除法算式中的关系。
8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数
5×4=20 35÷7=5 3+4=7
(1)同学回答后引发同学考虑:能不能说20是倍数,4是因数。使同学进一步理解倍数是两个数之间的一种相互依存的关系,必需说哪个是哪个的倍数,因数也同样如此。
(2)通过3+4=7使同学进一步理解倍数和因数都是建立在乘法或除法的基础之上的。
设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。
三、探索方法 发现特征
1、找一个数的因数。
(1)联系板书的乘除法算式观察考虑12的因数有哪些,井想方法找出15的所有因数。
(2)同学独立考虑,明白根据一个乘法(除法)算式可以找出15的两个因数,在同学充沛交流的基础上引导同学有条理的“一对一对”说出15的因数。
(3)用“一对一对”的方法找出36的所有因数。可能有的同学根据乘法算式找的,也有的同学是根据除法算式找的,都应该给予肯定。
(4)引导同学观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它自身。
设计说明:先布置同学“找一个数的因数”可以使同学利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。同学交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导同学“一对一对”的找是必要的,它可以培养同学的有序考虑。最后引导同学观察。使同学自主发现、归纳出一个数的因数的某些特征。
2、找一个数的倍数。
(1)让同学找3的倍数,比一比谁找得多。
(2)同学汇报后,引导同学有序考虑,并得出3的倍数可以用3乘连续的自然数1、2、3……,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。
(3)找出2的倍数和5的倍数,并引导同学观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它自身,没有最大的倍数。
设计说明:让同学比一比谁找的倍数多,可以使同学发生认知抵触,认识到一个数的倍数个数是无限的,在同学汇报后同样需要引导同学的有序考虑,需要引导同学自主发现、归纳一个数倍数的特征。
四、巩固练习
师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自身掌握得如何?
1、“想想做做”的第l题。同学表述后强调哪个是哪个的倍数(或因数)。
2、“想想做做”的第2题。同学填好后引导同学说一说:表中的“应付元数”其实都是什么?表格中为什么用省略号?
3、“想想做做”的第3题。同学填好后引导同学说一说:表格中所有数都是什么?这个表格中为什么没有省略号?
4、游戏——“找朋友”。让同学拿出各自的学号卡片,找出自身学号数的所有因数,使同学发现每个学号数的因数都在全班的学号数以内;再让同学找一找自身学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?
设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使同学感悟到其中蕴藏着求一个数倍数和因数的方法,以和倍数和因数的某些特征。第4题通过游戏活动进一步激发同学持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。
五、自我梳理 探索延伸
1、通过这节课的学习你有什么收获?向你的同伴介绍一下。
2、生活中许多现象与我们学习的“倍数和因数”的知识有关,课后同学们可以利用今天所学的知识探索一下“1小时等于60分”的好处。通过探索使同学明白由于60的因数是两位数中最多的,可以方便计算。
设计说明:“向同伴介绍自身的收获”可以将课堂中学到的知识进行自我梳理,同时通过探索“1小时等于60分”的好处“,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展同学的知识面,使同学认识到数学知识的应用价值。
倍数的教案篇5
教学内容:苏教版(义教课标数学)四下第70-71的例题以和72页“想想做做”的1-3页。
教学目标:
1、通过操作活动得出相应的乘除法算式,协助同学理解倍数和因数的意义;探索求—个数的倍数和因数的方法,发现一个数倍数和因数的某些特征。
2、在探索一个数的倍数和因数的过程中培养同学观察、分析、概括能力,培养有序考虑能力。
3、通过倍数和因数之间的互相依存关系使同学感受数学知识的内在联系,体会到数学内容的奇妙、有趣。
教学重点:理解倍数和因数的意义。
教学难点:探索求一个数的倍数和因数的方法。
教学准备:每桌准各12个一样大小的正方形,每人准备一张自身学号的卡片。
设计理念:通过竟猜、操作、比一比谁写得多,找朋友等形式多样的活动激发同学持续的学习兴趣;同学通过独立考虑、合作文流进行自主探索;教师引导同学掌握数学考虑的方法。
教学过程:
一、智力竞猜 引入新课
1、让同学进行“智力竞猜”——春暖花香的季节,公园里许多人在划船,一条船上有两个父亲两个儿子,但总共只有3个人,这是怎么回事呢?(局部同学能猜出三个人分别是孙子、爸爸、和爷爷)
2、孙子、爸爸、爷爷的名字分别是韩韩,韩有才、韩广发。请同学以韩有才为中心介绍—下三个人的关系。同学可能会说出“韩有才.是爸爸”,“韩有才是儿子”的语句,这时引导同学说出“谁是谁的爸爸”“谁是准的儿子”。
3、上述“父子关系”是一种互相依存的关系,在表述时一定要完整。并向同学说明自然数中某两个数之间也有这种类似的依存关系——倍数和因数。
设计说明:“智力竞猜”走同学喜欢的形式,因为每个同学都有争强好胜之心,“竞猜”有两个作用,一是激发同学的学习兴趣,二是以此引出“相互依存”的关系,为理解倍数和因数的相互依存关系作铺垫。
二、操作发现 理解概念
1、师:“‘智慧从手指问流出’,通过操作我们能发现许多的知识。请同桌同学拿出课前准备的12个同样大小的正方形,试一试能摆出几个不同的长方形,并考虑一下其中蕴涵着哪些不同的乘除法算式。”
2、请同学汇报不同的摆法,以和相应的乘除法算式。(乘法算式和除法算式分开写)再向同学说明:假如一个图形经过旋转后和另一个图形一样,我们就认为这两个图形是一样的,让同学特重复的图形和算式去掉。(板书三十乘法算式,和几十相应的除法算式)
设计说明;让同学写出蕴涵的乘除法算式符合同学的知识基础,同学有的可能用乘法表示,也有的可能用除法表示;让同学将旋转后相同的去掉,这是一次简化,很多同学并不知道,需要指导,这样可以使同学认识到事物的实质。
3、让同学一起看乘法算式4×3=12,向同学指出:12是4的倍数,12也是3的倍数,4是12的因数,3也是12的因数。
4、先请一个同学站起来说一说.然后同桌的同学再互相说一说。
5、让同学仿照说出6×2=12和12×1=12中哪个数是哪个数的倍数,哪个数是哪个数的因数。
6、同学相互出一道乘法算式,并说一说谁是谁的倍数,谁是谁的'因数。同学可能会出现0×( )=0的情况,借此向同学说明我们研究因敷和倍数一般指不是0的自然数。
设计说明:倍数和因数是全新的概念,需要教师的“传授、讲解”,需要同学的适当“记忆”——重复、仿照。当然,要使同学真正理解还必需举一反三,通过互相举例可以逐步完善同学对倍数和因数的认识,同时使同学明确倍数和因数的研究范围。
7、以4×3=12与12÷3=4为例,向同学说明后面的除法算式是由前面的乘法算式得到的,根据这个除法算式可以说谁是谁的倍数,谁是谁的因数,说好后再让同学试一试其他几个除法算式中的关系。
8、练习:根据下面的算式,说说哪个数是哪个数的因数,哪个数是哪个数的倍数
5×4=20 35÷7=5 3+4=7
(1)同学回答后引发同学考虑:能不能说20是倍数,4是因数。使同学进一步理解倍数是两个数之间的一种相互依存的关系,必需说哪个是哪个的倍数,因数也同样如此。
(2)通过3+4=7使同学进一步理解倍数和因数都是建立在乘法或除法的基础之上的。
设计说明:乘法和除法是一种互逆的关系,在学习中应该沟通它们之间的联系;通过三道练习可以巩固刚刚获得的对倍数和因数的认识,将融会贯通落到实处。
三、探索方法 发现特征
1、找一个数的因数。
(1)联系板书的乘除法算式观察考虑12的因数有哪些,井想方法找出15的所有因数。
(2)同学独立考虑,明白根据一个乘法(除法)算式可以找出15的两个因数,在同学充沛交流的基础上引导同学有条理的“一对一对”说出15的因数。
(3)用“一对一对”的方法找出36的所有因数。可能有的同学根据乘法算式找的,也有的同学是根据除法算式找的,都应该给予肯定。
(4)引导同学观察12、15、36的因数,说一说有什么发现。一个数的因数个数是有限的,其中最小的因数都是1,最大的都是它自身。
设计说明:先布置同学“找一个数的因数”可以使同学利用操作得到的算式进行,观察,这样比较自然,而且为于找一个数的因数指明了方向。同学交流时突出了方法的多样性,既可以根据乘法算式想,也可以根据除法算式想,交流后引导同学“一对一对”的找是必要的,它可以培养同学的有序考虑。最后引导同学观察。使同学自主发现、归纳出一个数的因数的某些特征。
2、找一个数的倍数。
(1)让同学找3的倍数,比一比谁找得多。
(2)同学汇报后,引导同学有序考虑,并得出3的倍数可以用3乘连续的自然数1、2、3……,3的倍数的个数是无限的,所以写3的倍数时要借助省略号表示结果。
(3)找出2的倍数和5的倍数,并引导同学观察3、2、5的倍数情况,说一说有什么发现。一个数的倍数个数是无限的,其中最小的倍数是它自身,没有最大的倍数。
设计说明:让同学比一比谁找的倍数多,可以使同学发生认知抵触,认识到一个数的倍数个数是无限的,在同学汇报后同样需要引导同学的有序考虑,需要引导同学自主发现、归纳一个数倍数的特征。
四、巩固练习
师;刚才同学们认识了倍数和因数,并且探索了求一个数因数和倍数的方法,想不想检查一下自身掌握得如何?
1、“想想做做”的第l题。同学表述后强调哪个是哪个的倍数(或因数)。
2、“想想做做”的第2题。同学填好后引导同学说一说:表中的“应付元数”其实都是什么?表格中为什么用省略号?
3、“想想做做”的第3题。同学填好后引导同学说一说:表格中所有数都是什么?这个表格中为什么没有省略号?
4、游戏——“找朋友”。让同学拿出各自的学号卡片,找出自身学号数的所有因数,使同学发现每个学号数的因数都在全班的学号数以内;再让同学找一找自身学号数的倍数,井说一说能不能在全班学号数内部找到一个,还有其他的吗?
设计说明:第l题是基础练习.可以巩固对倍数和因数的认识,2、3两题联系实际,使同学感悟到其中蕴藏着求一个数倍数和因数的方法,以和倍数和因数的某些特征。第4题通过游戏活动进一步激发同学持续的学习热情,而且可以综合应用求倍数和因数的方法,再次认识到倍数和因数的某些特征。
五、自我梳理 探索延伸
1、通过这节课的学习你有什么收获?向你的同伴介绍一下。
2、生活中许多现象与我们学习的“倍数和因数”的知识有关,课后同学们可以利用今天所学的知识探索一下“1小时等于60分”的好处。通过探索使同学明白由于60的因数是两位数中最多的,可以方便计算。
设计说明:“向同伴介绍自身的收获”可以将课堂中学到的知识进行自我梳理,同时通过探索“1小时等于60分”的好处“,可以巩固倍数和因数的相关知识,沟通知识间的联系,拓展同学的知识面,使同学认识到数学知识的应用价值。
倍数的教案篇6
课前考虑:
1.概念揭示变“逻辑演绎”为“活动建构”。因数和倍数,保守教材是按数学知识的逻辑系统(除法整除约数和倍数)来布置的,这种概念的揭示,从笼统到笼统,没有同学亲身经历的过程,也无须同学借助原有经验的自主建构,同学获得的概念是刻板、冰冷的。假如能借助同学的操作和想象活动,唤起同学的“因倍意识”,自主建构起“因数和倍数”的意义,那么同学获得的概念必定是生动的、有意义的。
2.解决问题变“关注结果”为“对话生成”。要找出一个数的几个因数并不难,难就难在找出这个数的所有因数。这里有一个方法问题。是把方法简单地告诉同学,迫切地寻求结果,还是给同学充沛的探究时间,让他们通过独立考虑、交流讨论,从而发现问题、解决问题呢?很多胜利的教学标明,在教学中为同学营造出一个“对话场”,在生生、师生多角度、多层面的对话中,能让师生相互分享经验、沟通考虑,生成新的看法。
3.教学宗旨变“关注知识”为”启迪智慧”。“知识关乎事物,智慧关乎人生;知识是理念的外化,智慧是人生的反观。”从知识课堂走向智慧课堂,为同学的智慧生长而教,应成为我们数学教学的倾心追求。怎样通过对“因数和倍数”内涵的深度挖掘,在教给同学数学知识的同时,更教会他们数学考虑的方法,让他们在数学课堂上释放潜能,开启心智?这是我设计“因数和倍数”这堂课的宗旨所在。
教学目标:
1.通过“活动建构”,使同学领会因数和倍数的意义;通过独立考虑、交流谈论,初步掌握求一个数所有因数的方法。
2.在解决问题的过程中,培养同学思维的有序性、条理性,增强同学的探究意识和求索精神。
3.通过教学,让同学从中感受到数学考虑的魅力,体验到数学学习的乐趣。
教学准备:
练习纸、学号卡等。
教学重、难点:
掌握求一个数的所有因数的方法,学会有序地进行考虑。
倍数的教案6篇相关文章: