人教版六年级数学下册教案6篇

时间:
lcbkmm
分享
下载本文

我们在写教案的时候一定要根据自己的课程情况来,为了提升自己的教学水平,我们一定要认真学习如何制定教案,以下是好文汇小编精心为您推荐的人教版六年级数学下册教案6篇,供大家参考。

人教版六年级数学下册教案6篇

人教版六年级数学下册教案篇1

教学内容分析

教材首先用文字说明了储蓄的意义,介绍了本金、利率、利息的意义以及三者之间的关系,然后通过例4让学生掌握计算利息的基本方法。

教学目标

1.知道储蓄的意义,理解本金、利息、利率的意义。

2.掌握计算利息的基本方法。

3.经历收集信息的过程,培养学生在合作交流中解决问题的能力。

重点:掌握利息的计算方法。

难点:正确理解概念,能解决与利息有关的实际问题。

教学设计思路

创设情境,导入新课→合作交流,探究新知→巩固应用,提升能力→课堂小结,拓展延伸

教学准备

教师准备:ppt课件

教学过程

一、创设情境,导入新课。(5分钟)

1.创设情境。

师:同学们一定很喜欢过年吧,因为过年不仅有好吃的,好玩的,还可以得到不少压岁钱。你们的压岁钱是谁在保管着呢?(引导学生想到储蓄比较安全,并且能够得到利息)

2.导入新课。

师:同学们,你们了解储蓄吗?关于储蓄有哪些知识呢?这节课我们了解一下储蓄的知识。

二、合作交流,探究新知。(20分钟)

1.引导学生自学教材第11页关于储蓄的知识。

(1)出示自学提示:

①储蓄的好处。

②储蓄的方式。

③什么是本金、利息、利率?

④利息的计算公式是什么?

(2)检验自学成果,引导学生找出下题中的本金和利息。

课件出示:明明20xx年11月1日把100元压岁钱存入银行,整存整取1年,到20xx年11月1日,明明不仅可以取回存入的100元,还可以得到银行多付给的1.5元,共101.5元。

2.用储蓄的知识解决问题。

(1)课件出示例4,引导学生读题并找出已知条件和所求问题。

(2)组织小组讨论:求2年后可以取回多少钱,就是求什么。

(3)组织学生尝试解题。

(4)组织全班交流,明确解题思路。

思路一:先求利息,最后求可取回多少钱。可取回钱数为本金+(本金×利率×存期)。

思路二:把本金看作单位“1”,先求出本金和2年的利息一共是本金的百分之几,再求可以取回多少钱。可取回的钱数为本金×(1+年利率×2)。

三、巩固应用,提升能力。(10分钟)

1.完成教材第11页“做一做”。

2.完成教材第14页第9题。

四、课堂小结,拓展延伸。(5分钟)

1.这节课我们学习了什么?引导学生回顾总结。

2.计算利息时,存款的利率是年利率,计算时所乘的时间单位应是年;存款的利率是月利率,计算时所乘的时间单位应是月。

板书设计利率

例4方法一5000×2.10%×2=210(元)

5000+210=5210(元)

方法二5000×(1+2.10%×2)

=5000×(1+0.042)

=5000×1.042

=5210(元)

答:到期时王奶奶可以取回5210元。

培优作业1.刘亮有20xx元,打算存入银行2年。现有两种储蓄方法:第一种是直接存2年,年利率是2.10%;第二种是先存1年,年利率是1.50%,第一年到期时再把本金和利息合在一起,再存1年。选择哪种储蓄方法得到的利息多一些?

第一种储蓄方法:20xx×2.10%×2=84(元)

第二种储蓄方法:20xx×1.50%×1=30(元)

(20xx+30)×1.50%×1=30.45(元)

30+30.45=60.45(元)

60.45

提示:在累计存期相同的情况下,一次性存款比其他存款方式所获得的利息要多一些。

2.赵伯伯把一笔钱存入银行5年,年利率为2.75%,到期后取得275元利息。赵伯伯存入银行多少钱?

275÷2.75%÷5=20xx(元)

答:赵伯伯存入银行20xx元。

教学反思培养学生的数学能力是小学数学教学的重要任务之一。为此,教学中,要引导学生正确运用公式计算各种情况下的利息问题。

微课设计点教师可围绕“利息的计算方法”设计微课。

人教版六年级数学下册教案篇2

【教学内容】《义教课标实验教科书 数学》(人教版)六年级下册第56-58页例4及做一做。

【教学目标】

1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

2、能按一定的比,将一些简单图形进行放大或缩小。

【教学重点】图形的放大与缩小。

【教学难点】按一定的比把图形放大或缩小。

【教学准备】多媒体

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50c:40=50c:4000c=1:80

(3)你是怎么想的?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000c=50

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

三、巩固练习

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获 畅谈感想

这节课,你有什么收获?听课随想

人教版六年级数学下册教案篇3

教学内容:

成数(课本第9页例2)

教学目标:

1、结合具体事物,经历认识成数,解答有关成数的实际问题的过程。。

2、对成数问题有好奇心,获得运用已有知识解决问题的成功体验。

教学重点:

理解成数的意义。

教学难点:

解决解答有关成数的实际问题。

教学过程:

一、复习

1、填空

①四折是十分之( ),改写成百分数是( )。

②六折是十分之( ),改写成百分数是( )。

③七五折是十分之( ),改写成百分数是( )。

2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?

二、创设情境,导入新课

同学们有听农民们说:今年我家的稻谷比去年增产二成,我家的桂皮晒干后只有五成等吗?他们说的是什么意思呢?原来商业上与百分数有关的术语是折扣,而农业上与百分数有关的术语就是成数。渗透环保教育

三、探究体验

(一)成数表示一个数是另一个数的十分之几,通称几成。例如一成就是十分之一,改写成百分数就是10%。

1、让学生尝试把二成及三成五改写成百分数。

2、让学生说说除了农业上使用成数,还有哪些行业是使用了成数的知识。

3、练习:将下列成数改写成百分数。

二成=( )%; 四成五=( )%; 七成二=( )%。

(二)教学例2

1、出示例题,某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?

2、让学生读题,分析题意,今年比去年节电二成五怎么理解?是以哪个量为单位1?

3、学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。

4、理解节电二成五就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。

350(1-25%)=262.5(万千瓦时)

或者引导学生列出

350-35025%=262.5(万千瓦时)

四、巩固练习

1、三成=( )%; 五成六=( )%; 八成三=( )%;

2、第9页做一做

3、解决问题

(1)某乡去年的水稻产量是1500吨,今年因为受到天气灾害的影响水稻产量只有去年的八成五,今年的水稻产量是多少吨?

(2)鼎湖山20xx年累计旅游人次是18万人次,20xx年累计旅游人次比20xx年增加一成五,20xx年累计旅游人次是多少?(出外玩要做好垃圾分类)

(3)我校20xx年的在校生人数有820人,比20xx年在校生人数减少了二成,我校20xx年的在校生人数是多少?

(4)某鞋厂20xx年的年产量为30万双,20xx年年产量比20xx年增加了一成六,20xx年年产量又比20xx年增加一成,这个鞋厂20xx年的年产量是多少万双?

五、课堂总结

这节课你收获了什么?

人教版六年级数学下册教案篇4

课前准备

教师准备 ppt课件

教学过程

⊙提问导入

1.提问激趣。

根据“甲是乙的”,你能想到什么?

预设

生1:乙是甲的。

生2:甲比乙少,乙比甲多。

生3:甲是甲、乙之差的5倍。

生4:甲是甲、乙之和的。

生5:乙比甲多20%。

……

2.导入新课。

这节课我们复习用分数和百分数的知识解决问题。[板书课题:解决问题(二)]

⊙回顾与整理

1.分数(百分数)的一般应用题。

(1)分数(百分数)乘法应用题的特征及解题关键各是什么?

①特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

②解题关键:准确判断单位“1”的量。找准所求问题对应的分率,然后根据一个数乘分数的意义正确列式。

(2)分数(百分数)除法应用题的特征及解题关键各是什么?

①特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,就是求它们的倍数关系。

②解题关键:从问题入手,理清把谁看作标准量,也就是把谁看作单位“1”,谁和单位“1”的量作比较,谁就是被除数。

(3)分数(百分数)应用题的常见题型有哪些?如何解答?

①求甲是乙的几分之几(百分之几):甲÷乙。

②求甲比乙多(少)几分之几:(甲-乙)÷乙或(乙-甲)÷乙。

③已知甲比乙多(少)几分之几,求甲:乙×。

④已知甲比乙多(少)几分之几,求乙:甲÷。

⑤求百分率。

发芽率=×100%

小麦的出粉率=×100%

产品的合格率=×100%

出勤率=×100%

⑥求利息:利息=本金×利率×时间

2.分数应用题的特例——工程问题。

(1)什么是工程问题?

明确:工程问题是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

(2)解决工程问题的关键是什么?

明确:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况灵活运用公式解题。

(3)工程问题的数量关系式有哪些?

预设

生1:工作总量=工作效率×工作时间

生2:工作效率=工作总量÷工作时间

生3:工作时间=工作总量÷工作效率

生4:合作时间=工作总量÷工作效率和

人教版六年级数学下册教案篇5

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:

负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

b、在数轴上除了可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决1;2+1;(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“8>6,所以—8。

人教版六年级数学下册教案篇6

教学内容:

抽取游戏

教学目标:

1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

教学重点:

抽取问题。

教学难点:

理解抽取问题的基本原理。

教学过程:

一、教学例

盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

1.猜一猜。

让学生想一想,猜一猜至少要摸出几个球。

2.实验活动。

(1) 一次摸出2个球,有几种情况?

结果:有可能摸出2个同色的球。

(2) 一次摸3个球,有几种情况?

结果:一定能摸出2个同色的球。

3.发现规律。

启发:摸出球的个数与颜色种数有什么关系?

学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

二、做一做

第1题。

(1) 独立思考,判断正误。

(2) 同学交流,说明理由。

第2题。

(1) 说一说至少取几个,你怎么知道呢?

(2) 如果取4个,能保证取到两个颜色相同的球吗?为什么?

三、巩固练习

完成课文练习十二第1、3题。

人教版六年级数学下册教案6篇相关文章:

朋友船社会教案6篇

大班安全第一课教案模板6篇

班会教案模板通用6篇

幼儿健康操教案优质6篇

蒙氏教育活动教案推荐6篇

幼儿园健康操教案模板6篇

蒙氏教育活动教案模板6篇

安全第一课教案参考6篇

小班美术教学教案6篇

安全教育第一课教案6篇

人教版六年级数学下册教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
36038