优秀的教学反思可以提升教师们的教学质量,通过写教学反思是可以清楚地知道自己教学能力的不足之处的,以下是好文汇小编精心为您推荐的交换教学反思5篇,供大家参考。

交换教学反思篇1
?加法交换律》是义务教育教科书(人教版)数学四年级下册p17:例1的内容。运算定律是本册书中的重点,也为以后的简便运算打下基础。
本节教学我利用学生的举例、观察、发现、归纳,总结出加法交换律,环节设计合理,也激发了学生的学习积极性。
在情境导入环节,我利用播放成语故事《朝三暮四》引起学生对新知识的求知欲。让学生从故事中找信息,自己提出问题,然后学生解决问题。从故事中得到3+4=7(个)和4+3=7(个)这两个算式。接着我说:“对,两种吃法不同,结果猴子每天吃到的栗子的总数量是同样多的。”这就是今天要研究的内容,加法交换律。
在探究规律环节,我利用李叔叔骑车旅行的情景图。让学生从情景图中找信息,自己提出问题,然后学生解决问题。 根据学生回答板书:40+56=96(千米)或 56+40=96(千米)然后让学生说出这两个算式的相同点和不同点。学生回答,相同点是每组算式中有两个加数,而且两个加数相同,左右两边的加数的和相等。不同点是两个加数交换了位置。然后问:“这两个算式的和相等,这两个算式之间有什么关系?可以用什么符号连接?”学生从中回答,每组算式中有两个加数,而且两个加数相同,只是交换了位置,而得到40+56=56+40这个等式。我接着问:“你能照样子再举几个例子吗?”调动了学生的积极性。学生从这些例子可以得出什么规律?请用最简洁的话概括出来,学生回答:两个数相加,交换加数的位置,和不变,这叫做加法交换律。如果用字母a、b表示两个加数,则可以写成:a+b=b+a我问:“你能用自己喜欢的方式来表示加法交换律吗”然后学生回答特别多,像甲数+乙数=乙数+甲数,▲+=+▲等等特别多。虽然有的式子不够完美,但充分说明学生已经掌握了加法交换律。
在巩固练习环节,我设计了多种多样的'练习题,先是基础练习,还有拔高练习,层层深入,学生学得也兴趣盎然。
总结本节课,整节课环节紧凑,利用多媒体课件也节省了大量时间,有充分的时间练习。由于本节课内容不多,也很简单,学生的注意力也很集中,学生发言积极,所以也很好的完成了教学任务,学生也完成了学习任务。
但是本节课也有很多不足之处:1、在巩固环节,我出示了三道加法算式,但是有的学生利用减法验算,这样是不符合要求的。这时我应该让学生说出为什么不行,不应该老师解释,2、最后填表,由于时间关系我没给学生足够的时间,问题解决的不太理想。
交换教学反思篇2
通过本节课教学,由此引发了我的几点思考和体会:
1、提供主动参与的条件,促进教学资源动态生成。
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味。首先,通过教材重组,呈现教学内容结构,学生在感性认识上获得了基础,从而为发现、概括乘法结合律奠定了基础。其次,为学生提供足够的学习时间和空间,教师启发学生用抽象的算式来举例验证,引导学生进行小组合作探究,师生、生生多向互动,人人体验探索规律的过程。第三,改变了学生被动接受的学习方式,让学生根据自己对知识的理解和课堂中获得的信息进行判断和辨析,提出自己的见解和疑问。因此,课堂上体现学生在主动参与中思维的灵活性和开拓性,出现了许多令我意外而惊喜的资源。如有的学生提出:乘法结合律不仅是三个数相乘,还可以是四个数相乘。另一个学生提出:两个数相乘也能运用乘法结合律的例子等。
2、捕捉和利用教学资源,促进教学过程动态生成。
当学生动起来,课堂活起来,产生多种教学资源时,教师能否及时捕捉,给予准确、即时的判断,并且利用这些资源进行教学,促进教学资源的再生成与提升,不断推进教学过程,显得尤其重要。课前,考虑学生在课堂中可能出现的各种情况;课上,关注学生的学习状态思维方向,即时调整教学方案和教学行为,促进课堂教学过程不断动态生成。从学生质疑“乘法结合律不仅是三个数相乘,也可以是多个数
相乘”,可以看出学生的思维相当拓展,已经不惟书、不惟师,敢于质疑、批判的精神风貌。我再次引导学生讨论、交流:“怎样归纳乘法结合律,你能说说吗?”及时促进学生的思维提升到更高的层面,进行思维的聚合。当学生提出“125×16也能运用乘法结合律”时,我觉得这节课的教学已经成功了。学生学会迁移,学会从个别到一般的`推理方法,从而进一步拓展学生的思维,把课堂教学再次推上新的“高潮”。
通过这节课的教学,我深深体会到:一个真实的教学过程是不可预设的,而是一个师生等多种因素间动态的相互作用的过程。教师应多关注学生,要为学生提供必要的资源,要善于开发和利用学生资源,使课堂成为一个资源生成和动态生成的过程,成为促进师生生命共同发展的场所。
交换教学反思篇3
1、通过模仿举例,渗透等量代换的数学方法。
学生根据模仿,学会了根据结果相等,将两个算式写成恒等的方法,这对于他们来说是一个新知识,其实也就是在经历等量代换的过程。而这一数学方法对接下来要学习其它各种运算定律,及运用定律进行简便运算,列方程解应用题等都十分重要。
2、通过对大量数学事实的对比,发现其中的规律,学习不完全归纳发。
学生在独立举例后,在全班范围内交流发现的规律,得出结论:不管两个加数的位置怎么交换,它们的和都不会改变。师引导:同学们所举的所有例子都能写出这样的结论,可见我们的四则运算中有一个规律,谁能把这个规律准确地概括一下?……从个别到一般,把对特例的发现上升为具有普遍意义的规律和性质,这就是小学阶段的“不完全归纳法”,让学生经历这一归纳过程,体验结论的科学性。
3、不足
本节课的不足之处就是对处理“用字母表示定律”这一环节有些不足。在学生例举字母表示定律后总结出用a+b=b+a公式来表示定律后,没有进一步拓展,如问:三个数可以怎样表示呢?这个规律还适用吗?这样环节设计,会让学生对字母表示运算定律更为熟悉,从而培养数学思想,更能强化目标。
在今后的数学中,注意强化本节课的重难点,并针对重难点进行数学思想的渗透与拓展,尤其对稍差的学生更应该重复强化,尽量让每一个孩子都学会。
交换教学反思篇4
一、情境引入。
师:我们班有男生27人,女生31人,班上一共有多少人?
生:27+31=58人
师:我还有一种不一样的方法,你知道吗?
生:我猜是:31+27=58人
师:请你们观察一下这两个算式有什么共同点,什么不同?
生:计算的都是总人数。
生:两个加数都相同。
生:和也相等。
生:两个加数交换了位置。
师:既然两道算式的和相等,27+31和31+27中间可以用什么符号连接?
生:等号。
生(惊喜地):是加(减)法的交换律。
生:是加法的交换律。
师板书:加(减)法的交换律。
二、反复例证,充分感知交换律。
师:你认为加法交换律是什么样子的?
生:交换两个加数的位置,和不变。
师:所有的加法算式都是这样吗?
生:是的。
师:口说无凭,你能举例子说明吗?
师:你认为这样的例子多不多?
生:很多,都举不完。
师:你认为怎样举例最好?
生:一组一组地写。
生:你写的完吗?
生:我举有代表性的例子。
师:什么样的例子有代表性?
生:一位数举一个,两位数举一个……
生:还要考虑0的情况。
生:再举几个和0有关的例子。
生:我认为如果能找到了一个反例,就说明不是所有的加法算式都有加法交换律(加法交换律不成立),我准备找反例。
生举例:9+8=8+9
12+26=26+12
……
0++=0+0
0+7=7+0
……
0.9+0=0+0.9
师:这个例子和你们举的例子有点不一样。
生:它的加数是0。
生:上面几道算式的加数也是0。
生:0.9是小数。
师:同学们举得例子真不少,不仅想到了整数,还想到了小数,这些例子说明了什么?
生:交换两个加数的位置和不变。
师:有同学找到反例吗?
生:找不到。
生:减法不行,2-1不等于1-2。
生:减法也有行的:2-2=2-2。
生:只要有一个反例,就不行。
师:交换律在减法中成立吗?
生:不成立(师擦去减)
生:乘法、除法行。
师:真的吗?
生:5*4=4*5
生:也有不行的(不成立)。
师:现在请你们举例,认为行的就找行的,认为不行的就找反例。
(因为有了加法的基础,学生举例的方法都不错)
生:我认为行的:36*24=24*36
生:我认为不行:25*24不等于24*25
生:不对,
师:请你们帮助解决一下。
生:25*24=600,24*25=600
生:我认为行:0*396=396*0
生:我认为不行:25*4不等于5*24
生:例子不对,是因数交换位置,又不是两个数交换位置。
生:25*4=4*25
生:不计算也可以知道他们的积相等,25*4表示4个25相加,4*25也可以表示4个25相加。
师:真不错,她从乘法的`意义来说明两个乘法算式的积相等。
生:加法也是这样,虽然交换了两个加数的位置,但两个加数没有变,和也不会变。
……
生:除法不行:6/3不等于3/6
生:除法也有行的:8/8=8/8
生:只要有一个不行,就不成立。
师:通过刚才的举例,你认为交换律在哪些运算中成立?
生:加法和乘法。
师:你能完整地表述加法和乘法的交换律吗?
生:交换两个加数的位置,和不变。
生:交换两个因数的位置,和不变。
师板书
师:你觉得老师写这两句话,难不难写?
生:难写。
师:你能不能想一个简单的写法,帮帮我。
生思考,并尝试写,有些小组小声地讨论起来。
生:甲数+乙数=乙数+甲数
生:苹果+香蕉=香蕉+苹果
生:a+b=b+a
……
紧接着,学生们也分别用文字、图形、字母表示了乘法交换律。
师:这里的符号可以代表哪些数?比如a和b?
生:代表0、1、2、3、4……
生:代表1000、10000……
生:代表任何数。
师:你能完整地说一说加法和乘法交换律吗?
生:交换任何两个加数的位置,和不变。
生:交换任何两个因数的位置,和不变。
生:可以合成一句话:交换任意两个加数(因数)的位置,和(积)不变。
三、运用中升华认识。
师:学习加法、乘法交换律有什么作用,过去我们用过吗?
生:在二年级学过,看一幅图写两个加法算式。
生:一句乘法口诀可以计算两道乘法算式。
生:验算时用过。
生:加法可以用交换两个加数的位置来验算,乘法也可以。
紧接着,学生完成相应的练习。
交换教学反思篇5
前段时间听了四年级的一节研讨课——“加法交换律”。课中,教师让学生“用自己喜欢的方式表示加法交换律”,很简单的要求,学生十拿九稳的不会出错,但是学生表现出乎我意料之外:
学生1:√+×=⊿,×+√=⊿,√+×=×+√;
学生2:a+b=w=b+a=w
回顾课堂,执教者老师笑容甜美,语言亲切,精心设计了这节研讨课:
教师从学生熟悉的生活情境“李叔叔一天共骑了多少千米?”引入新课,学生列式后分析得出:40+56=56+40,在此基础上教师又利用天平的直观演示,引导学生得到两个等式:50+10=10+50、100+20=20+100,学生观察三个等式交流总结初步体验“加法交换律”。接着教师让学生自主举例子,学生积极踊跃:1+3=3+1,789+121=121+789……,教师再次让学生观察黑板上的7个算式,结合算式让学生进一步的理解“加法交换律”,并比较辨析加法交换律中的“变”和“不变”,最后教师才水到渠成的在黑板上板书课题“加法交换律”。
对于“加法交换律”的得出教师真是花了心思,下足了功夫。可是从学生“用自己喜欢的方式表示加法交换律”这个环节的表现看得出,学生对“加法交换律”的理解没有到位。问题在哪里呢?我认为,加法交换律的内容比较简单,学生在一、二年级已经有了大量的感性认识,只是到四年级才开始总结提升“把零散的感性认识上升为理性认识”。用语言表述加法交换律,以及用字母表示加法交换律,对学生来说也不是很困难的。因此这节课,对于“加法交换律”的得出,可以更简洁,只用一个情境就可以,天平的效果不是很好,天平小,很多同学没有看见,因此天平的环节可以取消;黑板的板书也可以更简洁,只板书等式;要让学生体会符号表示“加法交换律”的简明以及让学生体验运用“加法交换律”可以使有些计算简便。
?思考】我们在平时的教学中是不是把探究新知的过程搞复杂了?探究新知的时候,为了追求“完美”,为了讲得“透彻”,我们会步步为营,取各家“精华”放在一起,舍不得“丢弃”,于是,很简单的知识点的探究,在我们的设计下,就……。有位哲人说:“简约到极致,就是美丽。”正所谓:“大道至简”,其实,教学也是如此,“简约”更美,简约的数学课堂必然是美丽的课堂,这种美丽同样有着多层的解读:它是教师个性化教学思想光辉的折射;它是数学学科本身逻辑、严谨、充满理性精神的魅力凸现;它是“简约而不简单”这样一句流行语的生动注解;它是学生在教师引导下用“四两拨千斤”方式自主学习的完美演绎……设计简洁的教学环节,采用简便的教学方法,也能有效,也能让学生喜欢而轻松愉快、积极主动地欣然接纳!
交换教学反思5篇相关文章:
★ 反思的作文5篇