因式分解数学教案7篇

时间:
Indulgence
分享
下载本文

结合游戏元素的教案,能够让学生在轻松愉快的氛围中学习,大家在制定教案时,需关注学生的情感态度和价值观,好文汇小编今天就为您带来了因式分解数学教案7篇,相信一定会对你有所帮助。

因式分解数学教案7篇

因式分解数学教案篇1

教学目标

1.知识与技能

领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法

经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观

培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键

1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的目的。

教学方法

采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程

一、回顾交流,导入新知

?问题牵引】

1.分解因式:

(1)-9x2+4y2;

(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

?知识迁移】

2.计算下列各式:

(1)(m-4n)2;

(2)(m+4n)2;

(3)(a+b)2;

(4)(a-b)2.

?教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:

(1)m2-8mn+16n2

(2)m2+8mn+16n2;

(3)a2+2ab+b2;

(4)a2-2ab+b2.

?学生活动】从逆向思维的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;

(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

?归纳公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例学习,应用所学

?例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;

(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;

(4)+n4.

?例2】如果x2+axy+16y2是完全平方,求a的值。

?思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3。

三、随堂练习,巩固深化

课本p170练习第1、2题。

?探研时空】

1.已知x+y=7,xy=10,求下列各式的值。

(1)x2+y2;

(2)(x-y)2

2.已知x+=-3,求x4+的值。

四、课堂总结,发展潜能

由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2。

在运用公式因式分解时,要注意:

(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;

(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;

(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解。

五、布置作业,专题突破

因式分解数学教案篇2

整式乘除与因式分解

一.回顾知识点

1、主要知识回顾:

幂的运算性质:

aman=am+n(m、n为正整数)

同底数幂相乘,底数不变,指数相加.

=amn(m、n为正整数)

幂的乘方,底数不变,指数相乘.

(n为正整数)

积的乘方等于各因式乘方的积.

=am-n(a≠0,m、n都是正整数,且m>n)

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

a0=1(a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

a-p=(a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

也可表示为:(m≠0,n≠0,p为正整数)

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

二、熟练掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的.最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

①平方差公式:a2-b2=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

因式分解数学教案篇3

一、教学目标

?知识与技能】

了解运用公式法分解因式的意义,会用平方差分解因式;知道提公因式法分解因式是首先考虑的方法,再考虑用平方差分解因式。

?过程与方法】

通过对平方差特点的辨析,培养观察、分析能力,训练对平方差公式的应用能力。

?情感态度价值观】

在逆用乘法公式的过程中,培养逆向思维能力,在分解因式时了解换元的思想方法。

二、教学重难点

?教学重点】

运用平方差公式分解因式。

?教学难点】

灵活运用公式法或已经学过的提公因式法分解因式;正确判断因式分解的彻底性。

三、教学过程

(一)引入新课

我们学习了因式分解的定义,还学习了提公因式法分解因式。如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,大家知道因式分解与多项式乘法是互逆关系,能否利用这种关系找到新的因式分解的方法呢?

大家先观察下列式子:

(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

他们有什么共同的特点?你可以得出什么结论?

(二)探索新知

学生独立思考或者与同桌讨论。

引导学生得出:①有两项组成,②两项的符号相反,③两项都可以写成数或式的平方的形式。

提问1:能否用语言以及数学公式将其特征表述出来?

因式分解数学教案篇4

教学目标

?知识与技能】

1.会求反比例函数的解析式;2.巩固反比例函数图象和性质,通过对图象的分析,进一步探究反比例函数的增减性.

?过程与方法】

经历观察、分析、交流的过程,逐步提高运用知识的能力.

?情感态度】

提高学生的观察、分析能力和对图形的感知水平.

?教学重点】

会求反比例函数的解析式.

?教学难点】

反比例函数图象和性质的运用.

教学过程

一、情景导入,初步认知

1.反比例函数有哪些性质?2.我们学会了根据函数解析式画函数图象,那么你能根据一些条件求反比例函数的解析式吗?

?教学说明】复习上节课的内容,同时引入新课.

二、思考探究,获取新知

1.思考:已知反比例函数y=的图象经过点p(2,4)

(1)求k的值,并写出该函数的表达式;

(2)判断点a(-2,-4),b(3,5)是否在这个函数的图象上;

(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?

分析:

(1)题中已知图象经过点p(2,4),即表明把p点坐标代入解析式成立,这样能求出k,解析式也就确定了.

(2)要判断a、b是否在这条函数图象上,就是把a、b的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.

(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.

?归纳结论】这种求解析式的方法叫做待定系数法求解析式.

2.下图是反比例函数y=的图象,根据图象,回答下列问题:

(1)k的取值范围是k>0还是kt;0?说明理由;

(2)如果点a(-3,y1),b(-2,y2)是该函数图象上的两点,试比较y1,y2的大小.分析:

(1)由图象可知,反比例函数y=kx的图象的两支曲线分别位于第一、三象限内,在每个象限内,函数值y随自变量x的增大而减小,因此,k>0.

(2)因为点a(-3,y1),b(-2,y2)是该函数图象上的两点且-3t;0,-2t;0.所以点a、b都位于第三象限,又因为-3t;-2,由反比例函数的图像的性质可知:y1>y2.

?教学说明】通过观察图象,使学生掌握利用函数图象比较函数值大小的方法.

因式分解数学教案篇5

教学目标

1、知识与能力:

1) 进一步巩固相似三角形的知识.

2)能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.

2.过程与方法:

经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。

3.情感、态度与价值观:

1)通过利用相似形知识解决生活实际问题,使学生体验数学来源于生活,服务于生活。

2)通过对问题的探究,培养学生认真踏实的学习态度和科学严谨的学习方法,通过获得成功的经验和克服困难的经历,增进数学学习的信心。

(三)教学重点、难点和关键

重点:利用相似三角形的知识解决实际问题。

难点:运用相似三角形的判定定理构造相似三角形解决实际问题。

关键:将实际问题转化为数学模型,利用所学的知识来进行解答。

?教法与学法】

(一)教法分析

为了突出教学重点,突破教学难点,按照学生的认知规律和心理特征,在教学过程中,我采用了以下的教学方法:

1.采用情境教学法。整节课围绕测量物体高度这个问题展开,按照从易到难层层推进。在数学教学中,注重创设相关知识的现实问题情景,让学生充分感知“数学来源于生活又服务于生活”。

2.贯彻启发式教学原则。教学的各个环节均从提出问题开始,在师生共同分析、讨论和探究中展开学生的思路,把启发式思想贯穿与教学活动的全过程。

3.采用师生合作教学模式。本节课采用师生合作教学模式,以师生之间、生生之间的全员互动关系为课堂教学的核心,使学生共同达到教学目标。教师要当好“导演”,让学生当好“演员”,从充分尊重学生的潜能和主体地位出发,课堂教学以教师的“导”为前提,以学生的“演”为主体,把较多的课堂时间留给学生,使他们有机会进行独立思考,相互磋商,并发表意见。

(二)学法分析

按照学生的认识规律,遵循教师为主导,学生为主体的指导思想,在本节课的学习过程中,采用自主探究、合作交流的学习方式,让学生思考问题、获取知识、掌握方法,运用所学知识解决实际问题,启发学生从书本知识到社会实践,学以致用,力求促使每个学生都在原有的基础上得到有效的发展。

?教学过程】

一、知识梳理

1、判断两三角形相似有哪些方法?

1)定义: 2)定理(平行法):

3)判定定理一(边边边):

4)判定定理二(边角边):

5)判定定理三(角角):

2、相似三角形有什么性质?

对应角相等,对应边的比相等

(通过对知识的梳理,帮助学生形成自己的知识结构体系,为解决问题储备理论依据。)

二、情境导入

胡夫金字塔是埃及现存规模的金字塔,被喻为“世界古代七大奇观之一”。塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米。据考证,为建成大金字塔,共动用了10万人花了时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低 。

古希腊,有一位伟大的科学家泰勒斯。一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及大金字塔的高度吧!”这在当时的条件下是个大难题,因为很难爬到塔顶的。亲爱的同学,你知道泰勒斯是怎样测量大金字塔的高度的吗?

(数学教学从学生的生活体验和客观存在的事实或现实课题出发,为学生提供较感兴趣的问题情景,帮助学生顺利地进入学习情景。同时,问题是知识、能力的生长点,通过富有实际意义的问题能够激活学生原有认知,促使学生主动地进行探索和思考。)

三、例题讲解

例1(教材p49例3——测量金字塔高度问题)

?相似三角形的应用》教学设计 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.

解:略(见教材p49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点a是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材p50练习?——测量河宽问题)

?相似三角形的应用》教学设计《相似三角形的应用》教学设计 分析:设河宽ab长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有 ,即 《相似三角形的应用》教学设计 .再解x的方程可求出河宽.

解:略(见教材p50)

问:你还可以用什么方法来测量河的宽度?

解法二:如图构造相似三角形(解法略).

四、巩固练习

1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2.小明要测量一座古塔的高度,从距他2米的一小块积水处c看到塔顶的倒影,已知小明的眼部离地面的高度de是1.5米,塔底中心b到积水处c的距离是40米.求塔高?

五、回顾小结

一 )相似三角形的应用主要有如下两个方面

1 测高(不能直接使用皮尺或刻度尺量的)

2 测距(不能直接测量的两点间的距离)

二)测高的方法

测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决

三 )测距的方法

测量不能到达两点间的距离,常构造相似三角形求解

(落实教师的引导作用以及学生的主体地位,既训练学生的概括归纳能力,又有助于学生在归纳的过程中把所学的知识条理化、系统化。)

六、拓展提高

怎样利用相似三角形的有关知识测量旗杆的高度?

七、作业

课本习题27.2 10题、11题。

因式分解数学教案篇6

知识点:

因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:

理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:

考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

教学过程:

因式分解知识点

多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

(1)提公因式法

如多项式

其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用

写出结果。

(3)十字相乘法

对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根x1,x2,那么

2、教学实例:学案示例

3、课堂练习:学案作业

4、课堂:

5、板书:

6、课堂作业:学案作业

7、教学反思:

因式分解数学教案篇7

教学设计思想:

本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。

教学目标

知识与技能:

会用平方差公式对多项式进行因式分解;

会用完全平方公式对多项式进行因式分解;

能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;

提高全面地观察问题、分析问题和逆向思维的能力。

过程与方法:

经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。

情感态度价值观:

通过学习进一步理解数学知识间有着密切的联系。

教学重点和难点

重点:①运用平方差公式分解因式;②运用完全平方式分解因式。

难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式

关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。

因式分解数学教案7篇相关文章:

捉迷藏大班数学教案7篇

中班数学教案最新7篇

1到10数学教案优秀7篇

幼儿园中班优秀数学教案7篇

角的认识数学教案推荐7篇

图形分类中班数学教案7篇

人教版小学二年级数学教案7篇

图形分类二中班数学教案7篇

幼儿园小班下数学教案优秀7篇

数学《认识0》教案7篇

因式分解数学教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
120995